
Andrea Melloncelli
andrea.melloncelli@quantide.com

What Software Engineers can share
with Data Scientists:

 … with Automatic Tests

sponsored by

mailto:andrea.melloncelli@quantide.com

Outline

1. Conway’s Game of Life
2. Why do tests

2.1. Validation
2.2. Working documentation
2.3. Readable code

3. Testing Strategies
3.1. Test Driven Development (TDD)
3.2. Test After Development (TAD)

4. Testing tools
4.1. Testthat package
4.2. Shinytest package

Summary

sponsored by

1. Conway’s Game of Life

Dead

Alive

Legend:

sponsored by

1. Conway’s Game of Life

Dead

Alive

Legend:

http://jonathan-jackson.net/life-in-a-shade-of-ruby
https://en.wikipedia.org/wiki/Conway's_Game_of_Life

http://jonathan-jackson.net/life-in-a-shade-of-ruby
https://en.wikipedia.org/wiki/Conway's_Game_of_Life

Outline

1. Conway’s Game of Life
2. Why do tests

2.1. Validation
2.2. Working documentation
2.3. Readable code

3. Testing Strategies
3.1. Test Driven Development (TDD)
3.2. Test After Development (TAD)

4. Testing tools
4.1. Testthat package
4.2. Shinytest package

Summary

sponsored by

2. Why do tests?

1. Validation
2. Working documentation
3. Readable and reusable code

sponsored by

2.1. Validation
Context: Evolvecontext(“evolution of a single cell”)

…

2. Why do tests?

sponsored by

2.1. Validation
Context: Evolve

1. Test 1: rule 1
1.1. ...

2. Test 2: rule 2
2.1. ...

3. Test 3: rule 3
3.1.

4. Tests ...

context(“evolution of a single cell”)
…

test_that(desc = “rule1”,...)

test_that(desc = “rule2”,...)

test_that(desc = “rule3”,...)

test_that(desc = “rule4”,...)

2. Why do tests?

sponsored by

2.1. Validation
Context: Evolve

1. Test 1: rule 1
1.1. ...

2. Test 2: rule 2
2.1. ...

3. Test 3: rule 3
3.1.

4. Tests ...

context(“evolution of a single cell”)
…
test_that(desc =
 paste("Any dead cell",
 "with exactly three live neighbours",
 "becomes a live cell,",
 "as if by reproduction."),

...

2. Why do tests?

sponsored by

2.1. Validation
Context: Evolve

1. Test 1: rule 1
1.1. ...

2. Test 2: rule 2
2.1. ...

3. Test 3: rule 3
3.1. Setup
3.2. Function run
3.3. Validation

4. Tests ...

context(“evolution of a single cell”)
…
test_that(desc =
 paste("Any dead cell",
 "with exactly three live neighbours",
 "becomes a live cell,",
 "as if by reproduction."),
 code = {
 state <- dead

 evolved_state <- evolve(state, neigb = 3)

 expect_equal(evolved_state, alive)
 })
...

2. Why do tests?

sponsored by

2.2. Working documentation

A test file provides:

1. Information about the feature (context)
2. Some working examples of how that feature is

implemented (test_that)

2. Why do tests?

sponsored by

2.3. Readable code
Refactoring: improving the code without adding further functionalities.

if (wday(now) > 2 &&
 wday(now) < 6 &&
 hour(now) > 8 &&
 hour(now) < 17)
{
 cat("I'm working.")
} else {
 cat("I'm out of the
office.")
}

2. Why do tests?

sponsored by

2.3. Readable code
Refactoring: improving the code without adding further functionalities.

if (wday(now) > 2 &&
 wday(now) < 6 &&
 hour(now) > 8 &&
 hour(now) < 17)
{
 cat("I'm working.")
} else {
 cat("I'm out of the
office.")
}

if (is_working_time(now))
{
 cat("I'm working.")
} else {
 cat("I'm out of office.")
}

is_working_time <- function(time) {
 wday(time) > 2 &&
 wday(time) < 6 &&
 hour(time) > 8 &&
 hour(time) < 17
}

2. Why do tests?

Outline

1. Conway’s Game of Life
2. Why do tests

2.1. Validation
2.2. Working documentation
2.3. Readable code

3. Testing Strategies
3.1. Test Driven Development (TDD)
3.2. Test After Development (TAD)

4. Testing tools
4.1. Testthat package
4.2. Shinytest package

Summary

sponsored by

3. Testing Strategies

1. Test Driven Development (TDD)

 Tests then Implementation

2. Test After Development (TAD)

 Implementation then Tests

sponsored by

3.1. Test Driven Development (TDD)

Add a Test

Tests
Pass

Fail

3. Testing Strategies

sponsored by

3.1. Test Driven Development (TDD)

Add a Test

Tests

Make slight
changes

Tests

Pass

Fail

Fail

3. Testing Strategies

sponsored by

3.1. Test Driven Development (TDD)

Add a Test

Tests

Make slight
changes

Tests

Pass

Fail

Fail

Refactor

Make slight
changes

Tests

Refactor

Tests

3. Testing Strategies

sponsored by

3.2. Test After Development (TAD)

Test After Development (TAD)

 Implementation then Tests

1. Old way of operate, I only need to add tests to my
implementation

2. It is always available
3. Useful when the result can’t be predicted (models, ...)

3. Testing Strategies

Outline

1. Conway’s Game of Life
2. Why do tests

2.1. Validation
2.2. Working documentation
2.3. Readable code

3. Testing Strategies
3.1. Test Driven Development (TDD)
3.2. Test After Development (TAD)

4. Testing tools
4.1. Testthat package
4.2. Shinytest package

Summary

sponsored by

4. Testing tools

1. Testthat package (TDD + TAD)

2. Shinytest package (TAD)

sponsored by

4.1. Testthat Package
- Complete set Testing tools
- Developed by RStudio
- Compatible with different Testing Strategies (TAD and TDD)

4. Testing tools

sponsored by

4.1. Testthat Package
Context: Evolve

1. Test 1: rule 1
1.1. ...

2. Test 2: rule 2
2.1. ...

3. Test 3: rule 3
3.1. Setup
3.2. Function run
3.3. Validation

4. Tests ...

context(“evolution of a single cell”)
…
test_that(desc =
 paste("Any dead cell",
 "with exactly three live neighbours",
 "becomes a live cell,",
 "as if by reproduction."),
 code = {
 state <- dead

 evolved_state <- evolve(state, neigb = 3)

 expect_equal(evolved_state, alive)
 })
...

4. Testing tools

sponsored by

The strategy is TAD (Test After Development), therefore:

1. Having a working Shiny application
2. Record a test using the application as the final user
3. Run all tests sequentially
4. And if something is wrong….

4.2. Shinytest
4. Testing tools

sponsored by

4.2. Shinytest
4. If something is wrong… Get notified graphically!

You see the differences between the recorded run
and the current coloured out.

4. Testing tools

sponsored by

Summary

Why are tests so important in our work?

sponsored by

Questions?

