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2. Why do tests?

1. Validation
2. Working documentation
3. Readable and reusable code
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2.1. Validation
Context: Evolvecontext(“evolution of a single cell”)

… 

2. Why do tests?
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2.1. Validation
Context: Evolve

1. Test 1: rule 1
1.1. ...

2. Test 2: rule 2
2.1. ...

3. Test 3: rule 3
3.1.

4. Tests ...

context(“evolution of a single cell”)
… 

test_that(desc = “rule1”,...)

test_that(desc = “rule2”,...)

test_that(desc = “rule3”,...)

test_that(desc = “rule4”,...)

2. Why do tests?
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2.1. Validation
Context: Evolve

1. Test 1: rule 1
1.1. ...

2. Test 2: rule 2
2.1. ...

3. Test 3: rule 3
3.1.

4. Tests ...

context(“evolution of a single cell”)
… 
test_that(desc = 
               paste("Any dead cell",
                     "with exactly three live neighbours",
                    "becomes a live cell,",
                    "as if by reproduction."),
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2. Why do tests?
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2.1. Validation
Context: Evolve

1. Test 1: rule 1
1.1. ...

2. Test 2: rule 2
2.1. ...

3. Test 3: rule 3
3.1. Setup
3.2. Function run
3.3. Validation

4. Tests ...

context(“evolution of a single cell”)
… 
test_that(desc = 
               paste("Any dead cell",
                     "with exactly three live neighbours",
                    "becomes a live cell,",
                    "as if by reproduction."),
      code = {
          state <- dead

          evolved_state <- evolve(state, neigb = 3)

          expect_equal(evolved_state, alive)
      })
...

2. Why do tests?
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2.2. Working documentation

A test file provides:

1. Information about the feature (context)
2. Some working examples of how that feature is 

implemented (test_that)

2. Why do tests?
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2.3. Readable code
Refactoring: improving the code without adding further functionalities.

if (wday(now) > 2 &&
    wday(now) < 6 &&
    hour(now) > 8 &&
    hour(now) < 17 ) 
{
    cat("I'm working.")
} else {
    cat("I'm out of the 
office.")    
}

2. Why do tests?
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2.3. Readable code
Refactoring: improving the code without adding further functionalities.

if (wday(now) > 2 &&
    wday(now) < 6 &&
    hour(now) > 8 &&
    hour(now) < 17 ) 
{
    cat("I'm working.")
} else {
    cat("I'm out of the 
office.")    
}

if (is_working_time(now)) 
{
    cat("I'm working.")
} else {
    cat("I'm out of office.")    
}

is_working_time <- function(time) {
    wday(time) > 2 &&
    wday(time) < 6 &&
    hour(time) > 8 &&
    hour(time) < 17 
}

2. Why do tests?
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3. Testing Strategies

1. Test Driven Development (TDD)

               Tests           then        Implementation

2. Test After Development (TAD)

     Implementation     then             Tests
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3.1. Test Driven Development (TDD)

Add a Test

Tests
Pass

Fail

3. Testing Strategies
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3.1. Test Driven Development (TDD)

Add a Test

Tests

Make slight 
changes

Tests

Pass

Fail

Fail

Refactor

Make slight 
changes

Tests

Refactor

Tests
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3.2. Test After Development (TAD)

Test After Development (TAD)

     Implementation     then             Tests

1. Old way of operate, I only need to add tests to my 
implementation

2. It is always available
3. Useful when the result can’t be predicted (models, ...)

3. Testing Strategies
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4. Testing tools

1. Testthat package  (TDD + TAD)

2. Shinytest package (TAD)
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4.1. Testthat Package
- Complete set Testing tools
- Developed by RStudio
- Compatible with different Testing Strategies (TAD and TDD)

4. Testing tools
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4.1. Testthat Package
Context: Evolve

1. Test 1: rule 1
1.1. ...

2. Test 2: rule 2
2.1. ...

3. Test 3: rule 3
3.1. Setup
3.2. Function run
3.3. Validation

4. Tests ...

context(“evolution of a single cell”)
… 
test_that(desc = 
               paste("Any dead cell",
                     "with exactly three live neighbours",
                    "becomes a live cell,",
                    "as if by reproduction."),
      code = {
          state <- dead

          evolved_state <- evolve(state, neigb = 3)

          expect_equal(evolved_state, alive)
      })
...

4. Testing tools
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The strategy is TAD (Test After Development), therefore:

1. Having a working Shiny application
2. Record a test using the application as the final user
3. Run all tests sequentially
4. And if something is wrong….

4.2. Shinytest
4. Testing tools
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4.2. Shinytest
4. If something is wrong… Get notified graphically!

You see the differences between the recorded run 
and the current coloured out.

4. Testing tools
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Summary

Why are tests so important in our work?
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Questions?


